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Abstract. The economic viability of the modern day mine is highly dependent upon careful planning
and management. Declining trends in average ore grades, increasing mining costs and environmental
considerations will ensure that this situation will remain in the foreseeable future. The operation and
management of a large open pit mine having a life of several years is an enormous and complex
task. Though a number of optimization techniques have been successfully applied to resolve some
important problems, the problem of determining an optimal production schedule over the life of the
deposit is still very much unresolved. In this paper we will critically examine the techniques that are
being used in the mining industry for production scheduling indicating their limitations. In addition,
we present a mixed integer linear programming model for the scheduling problems along with a
Branch and Cut solution strategy. Computational results for practical sized problems are discussed.
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1. Introduction

The operation and management of a large open pit mine is an enormous and com-
plex task, particularly for mines having a life of many years. Optimization tech-
niques can be successfully applied to resolve a number of important problems
that arise in the planning and management of a mine. These applications include:
ore-body modelling and ore reserve estimation; the design of optimum pits; the
determination of optimal production schedules; the determination of optimal oper-
ating layouts; the determination of optimal blends; the determination of equipment
maintenance and replacement policies; and many more (Caccetta and Giannini,
[7–9]).

A fundamental problem in mine planning is that of determining the optimum
ultimate pit limit of a mine. The optimum ultimate pit limit of a mine is defined
to be that contour which is the result of extracting the volume of material which
provides the total maximum profit whilst satisfying the operational requirement of
safe wall slopes. The ultimate pit limit gives the shape of the mine at the end of its
life. Usually this contour is smoothed to produce the final pit outline.
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Optimum pit design plays a major role in all stages of the life of an open pit: at
the feasibility study stage when there is a need to produce a whole-of-life pit design;
at the operating phase when pits need to be developed to respond to changes in
metal prices, costs, ore reserves, and wall slopes; and towards the end of a mine’s
life where the final pit design may allow the economic termination of a project. At
all stages there is a need for constant monitoring of the optimum pit, to facilitate
the best long-term, medium-term and short-term mine planning and subsequent ex-
ploitation of the reserve. The optimum pit and mine planning are dynamic concepts
requiring constant review. Thus the pit optimization technique should be regarded
as a powerful and necessary management tool. Further, the pit optimization method
must be highly efficient to allow for an effective sensitivity analysis. In practice one
needs to construct a whole spectrum of pits, each corresponding to a specific set of
parameters.

The ultimate pit limit problem has been efficiently solved using the Lerchs-
Grossmann [28] graph theoretic algorithm or Picard’s [33] network flow method
(see also Caccetta and Giannini [7,8]). These methods are based on the “block
model” of an orebody; the block model is detailed in the next section. A comparat-
ive analysis of the two methods is given by Caccetta et al [10]. Optimum pit design
plays an important role in mine scheduling.

The open pit mine production scheduling problem can be defined as specifying
the sequence in which “blocks” should be removed from the mine in order to
maximise the total discounted profit from the mine subject to a variety of physical
and economic constraints. Typically, the constraints relate to: the mining extraction
sequence; mining, milling and refining capacities; grades of mill feed and concen-
trates; and various operational requirements such as minimum pit bottom width.
The scheduling problem can be formulated as a mixed integer linear program
(MILP). However, in real applications this formulation is too large, in terms of both
the number of variables and the number of constraints, to solve by any available
MILP software.

Several approaches to the scheduling problem have appeared in the literat-
ure including: heuristics (Caccetta et al [14] and Gershon [23]); Lagrangian re-
laxation (Caccetta et al [14]); parametric methods (Dagdelen and Johnson [17],
Francois-Bongarcon and Guibal [6], Matheron [29,30] and Whittle [37,38]); dy-
namic programming techniques (Tolwinski and Underwood [36]); mixed integer
linear programming (Caccetta et al [11,14]; Dagdelen and Johnson [17] and Gers-
hon [22]); and the application of artificial intelligence algorithms such as simulated
annealing, genetic algorithms (Denby and Schofield [18]) and neural networks
(Denby et al [19]). Because of the complexity and size of the problem all these
approaches suffer from one or more of the following limitations: cannot cater for
most of the constraints that arise; yield only suboptimal solutions and in most cases
without a quality measure; can only handle small sized problems.

In this paper we will present the results of our efforts to produce a computational
method that incorporates all the constraints in the optimization and yields provably
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good solutions for reasonably large size problems. Given that mining represents
some 4% of the worlds net GDP, our more accurate modelling and solution of
practical mining problems has significant economic impact. We give a MILP for-
mulation of the scheduling problem and present a Branch and Cut procedure for its
solution. This is done in Section 3. Computational results are discussed in Section
4. The next section provides details of the block model used as well as a critical
account of the various techniques that are used in the mining industry. We only
discuss the more promising methods that have been applied to real mines.

2. Preliminaries

In this section we outline some of the methods that have been proposed for various
mine development problems. We begin with the basic block model of an ore body,
then we present a mixed integer linear programming formulation of the scheduling
problem and discuss a number of algorithms that have been proposed for its solu-
tion. We focus mainly on methods which have proved useful in the mining industry.
For a discussion of other methods we refer to Kim [27] and Thomas [34,35].

2.1. BLOCK MODEL

An early task in mine management is the establishment of an accurate model for
the deposit. Though a number of models are available, the regular 3D fixed-block
model is the most commonly used and is the best suited to the application of com-
puterized optimization techniques (Gignac [24] and Kim [27]). This model is based
on the ore body being divided into fixed-size blocks. The block dimensions are de-
pendent on the physical characteristics of the mine, such as pit slopes, dip of deposit
and grade variability as well as the equipment used. The centre of each block is
assigned, based on drill hole data and a numerical technique, a grade representation
of the whole block. The numerical technique used is some grade extension method
such as: distance weighted interpolations, repression analysis, weighted moving
averages and kriging (Gignac [24]). Using the financial and metallurgical data the
net profit of each block is determined.

The wall slope requirements for each block are described by a set (typically 4
to 8) of azimuth-dip pairs. From these we can identify for each block x the set of
blocks Sx which must be removed before block x can be mined. This collection of
blocks, x ∪ Sx , is usually referred to as a “cone”.

The key assumptions in the block model are: the cost of mining each block does
not depend on the sequence of mining; and the desired wall slopes and pit shape
can be approximated by the removed blocks.
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2.2. THE SCHEDULING PROBLEM

The open pit mine production scheduling problem can be defined as specifying the
sequence in which blocks should be removed from the mine in order to maximize
the total discounted profit from the mine subject to a variety of constraints. The
constraints may involve the following:

• mill throughput (mill feed and mill capacity)

• volume of material extracted per period

• blending constraints

• stockpile related constraints

• logistic constraints

We now present a simple mixed integer linear programming (MILP) formulation
that incorporates the mill throughput and volume of material extracted constraints.
We begin with some notation. Let
T is the number of periods over which the mine is being scheduled.
N is the total number of blocks in the ore body.
ct
i is the profit (in NPV sense) resulting from the mining of block i in period t.

O is the set of ore blocks.
W is the set of waste blocks.
ti is the tonnage of block i.
mt is the tonnage of ore milled in period t .
Si the set of blocks that must be removed prior to the mining of block i.

xt
i =

{
1, if block i is mined in periods to t

0, otherwise.
lt

0 lower bound on the amount of ore that is milled in period t .
ut

0 upper bound on the amount of ore that is milled in period t .
ut

w upper bound on the amount of waste that is mined in period t .
Then the MILP formulation is:

Maximize Z =
T∑

t=2

N∑
i=1

(
ct−1
i − ct

i

)
xt−1

i +
N∑

i=1

cT
i xT

i (2.1)

subject to
∑
i∈O

tix
1
i − m1 = 0 (2.2)

∑
i∈O

ti
(
xt

i − xt−1
i

) − mt = 0, t = 2, 3, ..., T . (2.3)

∑
i∈W

tix
1
i � u1

w (2.4)

∑
i∈W

ti
(
xt

i − xt−1
i

)
� ut

w, t = 2, 3, ..., T . (2.5)
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xt−1
i � xt

i , t = 2, 3, ..., T . (2.6)

xt
i � xt

j , t = 1, 2, ..., T , j ∈ Si; i = 1, 2, ..., N. (2.7)

lt
0 � mt � ut

0, t = 1, 2, ..., T . (2.8)

xt
i = 0, 1, for all i, t. (2.9)

Constraints (2.2), (2.3) and (2.8) ensure that the milling capacities hold. Constraints
(2.4) and (2.5) ensure that the tonnage of waste removed does not exceed the
prescribed upper bounds. Constraints (2.6) ensures that a block is removed in one
period only. Constraints (2.7) are the wall slope restrictions.

The above formulation has NT 0 − 1 variables, and (N + 2)T + N(d − 1)

linear constraints, where d is the average number of elements in a cone. Typically
T is around 10, N is 100,000 for a small pit and over 1,000,000 for a larger pit.
Consequently the MILP’s that arise are much too large for direct application of
commercial packages. However, as we demonstrate in this paper, the structure
of the problem can be exploited to develop computational strategies that produce
provably good solutions.

Solving MILP’s such as (2.1) – (2.9) is a difficult and challenging task. Indeed,
in the mining context, the lack of an immediate optimization technique has led the
mining industry to focus on easy subproblems. Consequently the schedules that
are generated, usually manually, are often outside the specified operating range
and certainly far from optimal. The usual approach is to first determine the final pit
outline and then through a series of refinements mining schedules are generated.

The final pit outline is determined by smoothing the contour produced by solv-
ing the ultimate pit limit problem. The ultimate pit limit is the maximum value
pit resulting from the mining of ore and waste blocks under the assumption that
all mining could be done in one period. That is, the solution to the problem (2.1)
subject to (2.7) with T = 1 and (2.9).

The ultimate pit limit problem can be solved using the Lerchs-Grossmann graph
theoretic algorithm [28] or by solving Picard’s [33] network flow formulation. Over
the past 10 to 15 years efficient packages have become available for solving this
problem (Caccetta et al. [10,11]; Whittle [37,38]). Prior to this, the Moving Cone
Technique was widely used because of its simplicity. This technique basically se-
lects a block x for mining providing the total profit from blocks contained in the
cone x ∪ Sx is positive. Whilst the method is extremely simple, it is easy to show
that solutions far from optimal can be obtained. A number of refinements to the
technique have been proposed (Yamatomi et al. [40]).

The Lerchs-Grossmann Algorithm (LGA) provided an important tool for mine
design. However, as time is not an input parameter, its use for scheduling is re-
stricted to mines having a very short life (up to 3 years). In the following we detail
various approaches to mine scheduling.
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2.3. ALGORITHMS

We begin by showing that the strategy outlined above for obtaining the production
schedule of a mine by first determining the final pit outline and then generating the
schedule is sound.

Let
Cu : contour generated by the application of the Lerchs-Grossman algorithm

(LGA).
Cs : final contour generated by an optimal schedule.

We note that the LGA generates a contour Cu with minimal number of blocks. We
assume that the contour Cs also has a minimal number of blocks. Note that the Cs

contains all blocks mined over the T time periods, that is:

Cs =
T⋃

i=1

{Pi : Pi set of blocks mined in period i}.

THEOREM . Consider an open pit mine in which all constraints have a non-
negative upper bound and a zero lower bound. Then Cs ⊆ Cu.

Proof. Suppose to the contrary that Cs � Cu. Let C1 = Cs\Cu be the set of
blocks mined under the optimal schedule that do not lie in Cu. Consider

C2 = Cs\C1 = Cs ∩ Cu,

the set of blocks mined under the optimal schedule that lie in Cu. Observe that C2

is a feasible pit. Further,

Z(Cs) = Z(C1) + Z(C2),

where Z(Ci) is the total value of the blocks in contour Ci , i = 1, 2. The minimality
of Cs implies that Z(Ci) > 0 for each i. Now consider the contour

C ′ = Cu ∪ C1.

Observe that C ′ satisfies the wall slope restrictions and consequently is a feasible
contour in terms of the ultimate pit limit problem. Further, since Cu ∩ C1 = φ,
contour C ′ has a total value of

Z(C ′) = Z(Cu) + Z(C1) > Z(Cu),

a contradiction. This proves that Cs ⊆ Cu.

As mentioned in the previous subsection, good commercial packages are available
for obtaining the contour Cu. The proof of the above result allows us to reduce the
block model that needs to be considered. This leads to a reduction in the number
of variables in (2.1) – (2.9). Below we detail approaches that attempt to determine
the production schedule.
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2.3.1. Parameterization Method

In their paper Lerchs and Grossmann [28] introduced the concept of parametric
analysis in order to generate an extraction sequence. They considered the undis-
counted model and varied the economic value of each block i from ci to (ci − λ)

for varying λ � 0. An increasing sequence of λ values gives rise to a set of nested
pits. These pits can be used to produce a production schedule. Since this early work
a number of authors have considered the implementation aspects of this method and
its variations (Francois-Bongarcon and Guibal [6], Caccetta et al. [11,14], Caléou
[15], Dagdelen and Johnson [17], Matheron [29,30], and Whittle [37,38]).

The mostly widely used scheduling software package that is based on paramet-
erization, is Whittle’s Four-D and Four-X [37,38]; the latter allows for multiple
ore types in the calculation of block costs. The parameter used in theses packages
is referred to as the “metal cost of mining” which is defined as: extraction cost
($/ton)/selling price ($/gm). This quantity provides an indication of the amount
of product that must be sold to cover the cost of extracting one ton of material.
The rationale for using this parameter is that the three components for calculating
the block values (selling price ($/unit), processing cost ($/ton) and extraction cost
($/ton)) reduce to one factor under the assumption that the ratio of processing and
extraction costs is constant. Whittle [37,38] suggests that a “best” mining schedule
comes from extracting each of the nested pits in turn and a “worst” schedule comes
from extracting the ore bench by bench.

The advantages of the Whittle approach include:
• the nested pits can be determined efficiently as each requires the solution of an

ultimate pit limit problem.
• the identification of clusters of high grade ore in the model.
• a measure in the design of the final pit contour subject to a change in price and

thus some sensitivity analysis can be performed.

The disadvantages of the Whittle approach includes:
• time and other variable factors (for example, extraction rate, different ore types,

blending, etc.) are only implicitly included in the optimization through modi-
fying the cost function.

• the possibility of a large increment in the size of the pit from one nested pit
to the next. This is referred to as the “gapping problem” and it arises because
there is no clear method for choosing the values of λ.

• optimality is not guaranteed. Indeed the “best” schedule may not even provide
an upper bound for the NPV of the mine. This is easily seen by noting the
nested pits produced by the LGA cannot have waste at the bottom whereas
those produced by an optimal schedule can.

• the validity of the underlying assumption that the rate of processing and ex-
tractor costs are constant. Indeed, Whittle [37] states that variation of ± 20%
over 5 years is typical.
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• the necessity of reducing time costs to a cost per ton basis. Making assump-
tions about the production rates, these costs are determined iteratively until a
“reasonable” solution is found.

• structural constrains such as mining to a maximum vertical depth or a min-
imum mining width, cannot be incorporated into the parameterization model.

• the extraction sequence may not satisfy the production requirements of the
mine.

Recently, in an attempt to address the spacial requirements, Whittle [38] introduced
the Milawa Algorithm which given a set of nested pits produces a revised schedule
with the aim of improving the NPV.

Another commercially available package which extends the nested pit approach
is the Earthworks NPV Scheduler [20]. This package first generates the nested pits
and then using these, the pushbacks are defined heuristically. The criteria for the
pushbacks is to keep them as close as possible to the extraction sequence suggested
by the nested pits taking into consideration equipment access. Finally, a restricted
tree search procedure is used to resequence the pushback removal to increase the
NPV. A major advantage of this package is that it may produce schedules that
are more likely to be acceptable to mining engineers because practical spacial
constraints are taken into acccount when defining the pushbacks.

Unfortunately, all methods that use the above nested pits approach in a sequen-
tial optimization procedure may produce a schedule that varies considerably from
the optimum. Indeed, even a feasible solution cannot be guaranteed.

2.3.2. MILP Approach

A number of authors have proposed MILP formulations to various mine scheduling
problems (Caccetta et al. [11,14], Dagdelen and Johnson [17], Gershon [21,22] and
Kim [27]). The major computational difficulty has been the size of the problem.
Typically MILP approaches are developed “in house” for short term schedules.
Below we outline two approaches for solving the MILP formulations.

Recently, Combinatorics Pty Ltd has released the package MineMax [31] for
long term mine scheduling. The MILP is solved using a commercial package (for
example, CPLEX). Our understanding is that if the problem is too large for the
MILP solver, or if a solution is not obtained within a prescribed time period, then
a second option is offered. This option is to solve each MILP formulation for free
variables on a period by period basis.

The advantages of MineMax include:
• all periods are addressed concurrently in the global case.
• the optimization incorporates all constraints including grade; structural con-

siderations; etc. Thus even if larger block sizes are used (to reduce the number
of variables) the solution obtained may be better than that obtained using the
nested pit approach.

The disadvantages of MineMax include:
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• capable of solving only very small size problems due to the large number
of integer variables and constraints. This is true for both options as will be
illustrated in the computational section.

• since reblocking is often required, the wall slope requirements are poorly ap-
proximated as is the block data.

• in the period by period option, the schedule obtained may be far from optimum.
Caccetta et al [14] proposed a Lagrangian relaxation method for solving the MILP.
At each step a problem similar to the ultimate pit limit problem is solved using
the LGA with additional constraints dualized. Subgradient optimization is used
to reduce the duality gaps. The method is tested on a real ore body with 20,979
blocks and 6 time periods. The schedules obtained are within 5% of the theoretical
optimum. The main problem with the method is resolving the duality gaps. How-
ever, the subproblems are useful in producing solutions using a heuristic. In fact,
the heuristic solution obtained for the real ore body is within 2% of the theoretical
optimum.

2.3.3. Other Methods

We conclude this section by briefly mentioning two other approaches. Runge Min-
ing Pty Ltd have developed the XPAC Autoscheduler package for mine scheduling
[5]. Their heuristic approach is based on the method proposed by Gershon [23]
which iteratively selects blocks to be extracted on a period by period basis. A
weighted function is used to determine the removal sequence. At each step only
blocks whose predecessors have been mined are considered. The advantage of the
method is its speed. It’s main use is an interactive tool where the user can see a large
number of scenarios by fixing in and out blocks and running the heuristic. The main
disadvantages are: the search is myopic; no guarantee of finding a feasible solution;
the obtained solution may be far from optimal. The method has been applied to
models with up to 100,000 blocks.

Tolwinski and Underwood [36] proposed a method which combines concepts
from stochastic optimization and artificial neural networks with heuristics exploit-
ing the structure of the mine. The method works by modelling the development of
the mine as a sequence of pits (states) where each pit differs from the previous pit
by the removal of one block (state change). A probability distribution based on the
frequency with which particular states occur is used to determine the state changes.
Heuristic rules are incorporated to learn these characteristics of the sequence of pits
which produce a good, or poor, result.

The main advantages of the method are:
• effects of time and other factors can be explicitly included in the optimization.
• the structural constraints are incorporated.
• applicable to mines of realistic size (tested on models of up to 88,000 blocks).

The main disadvantages are:
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• only a small number of all possible sequences can be explored. The method
suffers from “combinatorial explosion” of the number of states.

• no guarantee of finding a feasible solution if one exists.
• no measure of the quality of the solution.

3. A New Branch and Cut Method

In this section we outline our Branch and Cut procedure for solving the MILP (2.1)
- (2.9). Our work is motivated by the recent success of this approach to various large
combinatorial optimization problems including: the travelling salesman problem
(Applegate et al. [3] and Padberg and Rinaldi 32]); the vehicle routing problem
(Achuthan et al. [1,2] and Augerat et al. [4]); airline scheduling (Hoffman and
Padberg [25]); and various constrained spanning tree problems (Caccetta and Hill
[12,13]).

The objective of our work is to produce a method which explicitly incorporates
all constraints in the optimization and is capable of producing provably good solu-
tions for reasonably large problems. The quality bound is important as it provides
mining engineers confidence with the results produced.

We now detail some of the important features of our method which exploits
the structure of the problem. Our algorithm has been implemented in C++ and
involves some 17,000 lines of code. The code has been tested on operating mines.
Because of the commercialization of the software and confidentiality agreements
we are unable to provide full details of all aspects of our work. However, we do
summarize below some important features.

3.1. KEY FEATURES

1. The block model is reduced to only include blocks inside the final pit design
developed from the ultimate pit (Note: Theorem in previous section). Further
reductions are made through consideration of (2.2) - (2.5) and (2.7).

2. The MILP has strong branching variables due to the dependencies between
variables ((2.6) and (2.7)). Note that setting a variable to 0 or 1 will fix a
potentially large number of other variables. Consequently the subsequent LP
relaxations are significantly smaller in size. This motivates more branching
compared to typical Branch and Cut methods.

3. Cutting planes involving Knapsack constraints are identified using the capacity
upper bounds ((2.2) - (2.5)) and the block removal dependencies (2.7). Also
cuts are identified through material removal dependencies between benches.

4. Our search strategy involves a combination of best first search and depth first
search. The motivation for this is to achieve a “good spread” of possible pit
schedules (best first search) whilst benefiting from using depth first search
where successive LP’s are closely related from one child node to the next.
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For large problems this often results in provably good solutions being found
earlier than a search method geared to establishing an optimal solution.

5. Good lower bounds are generated through the use of an LP-Heuristic. The
method works by considering each period in turn and fixing in and out sets of
free variables. Cutting planes are then generated for the period, further LP’s are
solved and further fixing occurs. Throughout the fixing of variables feasibility
checks are used. If the heuristic succeeds, or fails due to an inferior lower
bound being found, then periods are considered in the same direction, other-
wise the direction is reversed. The heuristic is called for the first five levels of
the search tree and every eighth node created thereafter.

6. Standard fixing of non basic variables using reduced costs is carried out. Be-
cause of the block dependencies this may lead to the LP solution losing its
optimality. In this case we call the LP solver and re-enter the cutting plane
generation phase without branching.

7. Many branching rules were tested and the following proved to be the best. The
free variables are considered and a subset of these is chosen on the basis of
closeness to the value of 0.5. For each variable in the subset we calculate the
sum change in the fractional values of all variables dependent on the inclusion
and exclusion of the branching variable. Choose the one with the highest min-
imal sum change in both directions of branching. Strong branching is used if
the gap between the lower and upper bound is sufficiently small.

8. If the LP subproblem is not solved within a prescribed maximum time (2
minutes), then the LP optimization is terminated and branching is performed
using the rules in 7 above. An attempt is then made to solve the resulting LP’s
within the specified time. This process is repeated as long as necessary.

9. The cutting plane phase is terminated early if tailing-off is detected or if the LP
subproblem is solved optimally in more than a prescribed time (1 minute). Note
that adding further cutting planes, even with purging of ineffective constraints,
tends to increase the solution times for successive calls to the LP solver.

10. When branching we probe a random subset of variables having the same time
index as the branching one. Bounds on variables may also be updated during
this process.

11. All our LP subproblems are solved using CPLEX Version 6.6 [16]. We only use
CPLEX in solving the relaxed LP’s. The preprocessor and aggregator options
are switched off and all other defaults are used.

Before discussing computational results in the next section we conclude this sec-
tion with brief discussion on some extensions to the MILP formulation (2.1) - (2.9)
to incorporate further practical mining restrictions.
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3.2. MODEL EXTENSIONS

Besides including constraints from the linear sum of attributes of blocks or the
ratio of quantities and bounding them (for example, blending), the following are
modelled:

• Processing different ore types:
In many applications we have K � 2 ore types which need to be processed
through the mill. The processing rate, in tons/hour, ri for ore type i is known.
The total processing time per period constraints can be written as:

K∑
k=1

1

rk

(
N∑

i=1

tikx
1
i

)
� Q,

K∑
k=1

1

rk

(
N∑

i=1

tik
(
xt

i − xt−1
i

))
� Q, t = 2, 3, ..., T

where
tik: tonnage of ore type k in block i

Q : expected time (in hours) the mill is available per period.
• Maximum vertical depth:

To allow pit access (haul roads) it is desirable to restrict the maximum vertical
depth D that can be mined in any one period. This restriction can be modelled
as follows. Suppose blocks i and j have coordinates (x, y, z1) and (x, y, z2),
respectively with z1 < z2 and z2 −z1 > D. Then blocks i and j must be mined
in different time periods and so

x1
l = 0, for all blocks l more than D units below the surface.

xt
j � xt−1

i , for t = 2, 3, ..., T .

• Minimum pit bottom width:
In order to facilitate equipment movement, a minimum pit bottom width for
each period needs to be specified. We do not believe that linear constraints can
be used to specify this. The usual approach is to manually “smooth” the base
of each incremental pit; optimality is lost by this process. A feature we have
noted of mining is that when a pit is developed with blocks extracted from
several benches the wall slopes formed are rarely at their upper bounds, except
for blocks located at the limits of the final pit. Consequently, our approach is to
redefine the wall slope angles proportionally at all blocks except those located
at the limits. This will have the effect that blocks are removed in clusters and
pushbacks can be naturally defined.

• Stockpiles:
Stockpiles are formed for a number of reasons including: blending; storage
of excessive production; and storage of low grade ore for possible future pro-
cessing. When placing an ore block on a stockpile the block characteristics
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Table 1. Results for Smaller Problems

Problem CPU Time (hours)

Characteristics 0.25 0.5 1 2 4

Prob. 1 Gap(%) 0.2667 0.1929 0.1636 0.1538 0.1317

Nodes 2248 4715 9121 15341 27908

6720 Rows 771 643 641 639 702

Blocks

Prob. 2 Gap(%) 0.7205 0.6616 0.5469 0.5190 0.4972

Nodes 316 890 2049 4686 10775

13440 Rows 1786 1787 1784 1728 1674

Blocks

Prob. 3 Gap(%) 1.2507 1.2507 0.7901 0.7214 0.6787

Nodes 19 54 286 873 2280

26208 Rows 3988 4120 3781 3837 3812

Blocks

(grade, tonnage, etc) are known. However, as blocks are mixed on the stock-
pile, the characteristics of materials removed from the stockpile to the mill
need to be treated as variables. Since the amount of ore removed from the
stockpile is unknown prior to the optimization this gives rise to some non-
linear constraints. To overcome this, we define a variable for the grams of
metal taken from the stockpile per time period as well as tonnage of material.
Then, using these variables, the average grade of ore being removed from the
stockpile is implied and can be rounded. Note that this formulation defines
a valid upper bound for the problem. We use several different constraints to
bound the average grade value as well as conservation of movement constraints
to make the upper bound as tight as possible.

4. Computational Results

Our Branch and Cut algorithm has been implemented in C++ and tested on an SGI
Origin 200 dual processor computer as well as an SGI Origin 2000 shared memory
multiprocessor computer. The dual processor capability was only used to solve the
relaxed LP’s. The software has been extensively tested both on test data provided to
us by our industry partner as well as data from producing mines. The models in our
test data range from 6,720 to 209,664 blocks. In all cases T = 10. We ranged the
constraints on the amount of material removed as well as the bounds on the milling
requirements so as to cover the large number of cases that can actually occur.
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On the SGI Origin 200 computer we obtained for the 26,208 block model op-
timum solutions guaranteed to be within 0.4% of the optimum within 12 minutes.
For the largest model, solutions guaranteed to be within 2.5% of the optimum were
obtained within 4 hours. For these larger models we continue the computations for
a further 16 hours and observed there was negligible change in the gap.

On the SGI Origin 2000 computer we ran 6 different sized problems ranging
from 6720 to 209,664 blocks and obtained the results, which are typical of our
output, given in Tables 1 and 2. For the smaller problems we used serial CPLEX.
In our tables we use the following notation:

Gap(%):
(UB − LB)

UB
× 100

Nodes: total number of child nodes generated
Rows: total number of constraints in the LP.

Our method generates tight bounds. However, establishing optimality (except,
of course, for small problems) is difficult because once we achieve a near optimal
solution there are no available cutting planes to remove fractional variables occur-
ring in the same bench level. Note that (2.6) and (2.7) give dependencies between
variables corresponding to block removal in time and the vertical dimension, but
not horizontally.

Following the above extensive testing we applied our method to a producing
gold mine. This mine was operating on a schedule generated by MineMax. In order
to make a meaningful comparison with this schedule we simulated the same test
conditions used by MineMax. This involved reblocking the original block model
which contained 23 million blocks to one containing 1363 blocks. However, as reb-
locking was carried out with different packages, the total value of the undiscounted
pit used in our model was 3.3% less. In this application T = 6 and the discount
rate was 10%. The constraints involved material movement and an upper bound on
the milling capacity (per period). Our software generated 7 good schedules within
a total time of 10 minutes. Our best schedule was within 0.27% of the optimum and
validated by mining engineers as being realistic. Our schedule yielded an increase
of 13.1% in the NPV profit. In fact taking into account the differences in the block
model our solution value was at least 15% higher.

The MineMax solution (which was supplied to the mining company by the soft-
ware author) was obtained through a period by period optimization as the package
could not solve globally within the prescribed time limit. An important difference
between the two solutions is that ours generates a significantly higher cash flow in
the first two periods. This is in fact consistent with the aim of mine planners.

5. Conclusions

The branch and cut method that we have described in this paper provides the first
optimization technique that incorporates all the constraints that arise in mine pro-
duction scheduling. We have demonstrated that provably good solutions can be
obtained for practical sized problems. Our more accurate modelling coupled with
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fast solution techniques provides the mining industry with powerful mathematic-
ally based tools for managing its resources. As demonstrated significant economic
benefits are attainable.
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